
在線或現場,講師指導的實時計算機視覺培訓課程通過互動式討論和動手實踐演示計算機視覺的基礎知識,參與者逐步創建簡單的電腦視覺應用。
計算機視覺培訓以「在線實時培訓」或「現場實時培訓」的形式提供。在線實時培訓(又名“遠程實時培訓”)通過互動式
NobleProg -- 您當地的培訓機構
Machine Translated
Testimonials
他給我們的例子。
JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
實驗
JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
介紹的練習和範例。
Marcos - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
機器勒寧的主題。
Víctor Edgar - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
老師的態度
Ivonne Guadalupe Avendaño Hernandez - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
所教授的概念清晰,實用,並且有助於瞭解如何使用AI和ML這個主題。
Miguel - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
講師的經驗和知識。
SERGIO BRAVO - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
也許是一些練習。
Hilario García - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
做法之一
JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
教師學科的知識和處理
Zaira N. - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
創新,因為它是我們已經生活的東西。
jesus isaias - JONATHAN MARIANO, si
Course: Artificial Intelligence (AI) for Managers
Machine Translated
Computer Vision子類別
Computer Vision課程大綱
- Understand the fundamental concepts of object detection.
- Install and configure YOLOv7 for object detection tasks.
- Train and test custom object detection models using YOLOv7.
- Integrate YOLOv7 with other computer vision frameworks and tools.
- Troubleshoot common issues related to YOLOv7 implementation.
- 了解Caffe的結構和部署機制
- 執行安裝/生產環境/架構任務和配置
- 評估代碼質量,執行調試,監控
- 實施高級生產,如培訓模型,實施圖層和日誌記錄
- The basic principles of image analysis, video analysis and the Marvin Framework are first introduced. Students are given project-based tasks which allow them to practice the concepts learned. By the end of the class, participants will have developed their own application using the Marvin Framework and libraries.
- 了解計算機視覺的基礎知識
- 使用Python來實現計算機視覺任務
- 使用Python構建自己的計算機視覺應用程序
- 對計算機視覺感興趣的Python程序員
- 部分講座、部分討論、練習和大量實操
- 使用計算機視覺技術識別車道。
- 使用Keras構建和訓練卷積神經網絡。
- 訓練深度學習模型以區分交通標誌。
- 模擬完全自動駕駛的汽車。
- 互動講座和討論。
- 大量的練習和練習。
- 在實時實驗室環境中親自實施。
- 要申請本課程的定制培訓,請聯繫我們安排。
- Install and configure the necessary development environment, software and libraries to begin developing.
- Build, train, and deploy deep learning models to analyze live video feeds.
- Identify, track, segment and predict different objects within video frames.
- Optimize object detection and tracking models.
- Deploy an intelligent video analytics (IVA) application.
- Install and configure the necessary tools and libraries required in object detection using YOLO.
- Customize Python command-line applications that operate based on YOLO pre-trained models.
- Implement the framework of pre-trained YOLO models for various computer vision projects.
- Convert existing datasets for object detection into YOLO format.
- Understand the fundamental concepts of the YOLO algorithm for computer vision and/or deep learning.
- 本課程介紹了模式匹配領域中使用的方法,技術和算法,因為它適用於Machine Vision 。
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
Last Updated: