This instructor-led, live training in (online or onsite) is aimed at data scientists, machine learning engineers, NLP researchers, and AI enthusiasts who wish to understand the inner workings of GPT models, explore the capabilities of GPT-3 and GPT-4, and learn how to leverage these models for their NLP tasks.
By the end of this training, participants will be able to:
Understand the key concepts and principles behind Generative Pre-trained Transformers.
Comprehend the architecture and training process of GPT models.
Utilize GPT-3 for tasks such as text generation, completion, and translation.
Explore the latest advancements in GPT-4 and its potential applications.
Apply GPT models to their own NLP projects and tasks.
This instructor-led, live training in 台灣 (online or onsite) is aimed at data scientists, machine learning practitioners, and NLP researchers and enthusiasts who wish to effectively utilize Hugging Face for NLP tasks.
By the end of this training, participants will be able to:
Utilize a Hugging Face Transformer model, and fine-tune it on a specific dataset.
Gain the ability to independently address common NLP challenges.
Create and share your model demos effectively.
Streamline the optimization of your models for production.
Employ Hugging Face Transformers for solving a wide range of machine learning problems.
This course introduces linguists or programmers to NLP in Python. During this course we will mostly use nltk.org (Natural Language Tool Kit), but also we will use other libraries relevant and useful for NLP. At the moment we can conduct this course in Python 2.x or Python 3.x. Examples are in English or Mandarin (普通话). Other languages can be also made available if agreed before booking.
This course has been created for managers, solutions architects, innovation officers, CTOs, software architects and anyone who is interested in an overview of applied artificial intelligence and the nearest forecast for its development.
This course is aimed at developers and data scientists who wish to understand and implement AI within their applications. Special focus is given to Data Analysis, Distributed AI and NLP.
By the end of the training the delegates are expected to be sufficiently equipped with the essential python concepts and should be able to sufficiently use NLTK to implement most of the NLP and ML based operations. The training is aimed at giving not just an executional knowledge but also the logical and operational knowledge of the technology therein.
The Apache OpenNLP library is a machine learning based toolkit for processing natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.
In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.
By the end of this training, participants will be able to:
Install and configure OpenNLP
Download existing models as well as create their own
Train the models on various sets of sample data
Integrate OpenNLP with existing Java applications
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
ChatBots are computer programs that automatically simulate human responses via chat interfaces. ChatBots help organizations maximize their operations efficiency by providing easier and faster options for their user interactions.
In this instructor-led, live training, participants will learn how to build chatbots in Python.
By the end of this training, participants will be able to:
Understand the fundamentals of building chatbots
Build, test, deploy, and troubleshoot various chatbots using Python
Audience
Developers
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Note
To request a customized training for this course, please contact us to arrange.
This instructor-led, live training in 台灣 (online or onsite) is aimed at data scientists and developers who wish to use Spark NLP, built on top of Apache Spark, to develop, implement, and scale natural language text processing models and pipelines.
By the end of this training, participants will be able to:
Set up the necessary development environment to start building NLP pipelines with Spark NLP.
Understand the features, architecture, and benefits of using Spark NLP.
Use the pre-trained models available in Spark NLP to implement text processing.
Learn how to build, train, and scale Spark NLP models for production-grade projects.
Apply classification, inference, and sentiment analysis on real-world use cases (clinical data, customer behavior insights, etc.).
This instructor-led, live training in 台灣 (online or onsite) is aimed at data scientists and developers who wish to use TextBlob to implement and simplify NLP tasks, such as sentiment analysis, spelling corrections, text classification modeling, etc.
By the end of this training, participants will be able to:
Set up the necessary development environment to start implementing NLP tasks with TextBlob.
Understand the features, architecture, and advantages of TextBlob.
Learn how to build text classification systems using TextBlob.